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Key Points 
 

 We created the Blue Carbon (BC) model, which mapped the Gross Primary 
Production (GPP) of all tidal wetlands within the continental US 

 The BC model provides maps of tidal wetland GPP at sub-250 m scales and at 16-day 
intervals for the years 2000-2019 

 The average daily GPP per m2 was 4.32 ± 2.45 g C/m2/day, and the total annual GPP 
for the continental US was 39.65 ± 0.89 Tg C/yr 
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Abstract 
We mapped tidal wetland gross primary production (GPP) with unprecedented detail for 
multiple wetland types across the continental United States (CONUS) at 16-day intervals for 
the years 2000-2019. To accomplish this task, we developed the spatially-explicit Blue 
Carbon (BC) model, which combined tidal wetland cover and field-based eddy covariance 
(EC) tower data into a single Bayesian framework, and used a super computer network and 
remote sensing imagery (MODIS EVI). We found a strong fit between the BC model and EC 
data from ten different towers (r2=0.83, p<0.001, RMSE=1.22 g C/m2/day, average error was 
7% with a mean bias of nearly zero). When compared with NASA’s MOD17 GPP product, 
which uses a generalized terrestrial algorithm, the BC model reduced error by approximately 
half (MOD17 had r2=0.45, p<0.001, RMSE of 3.38 g C/m2/day, average error of 15%). The 
BC model also included mixed pixels in areas not covered by MOD17, which comprised 
approximately 16.8% of CONUS tidal wetland GPP. Results showed that across CONUS 
between 2000 and 2019, the average daily GPP per m2 was 4.32 ± 2.45 g C/m2/day. The total 
annual GPP for the CONUS was 39.65 ± 0.89 Tg C/yr. GPP for the Gulf Coast was nearly 
double that of the Atlantic and Pacific Coasts combined. Louisiana alone accounted for 15.78 
± 0.75 Tg C/yr, with its Atchafalaya/Vermillion Bay basin at 4.72 ± 0.14 Tg C/yr. The BC 
model provides a robust platform for integrating data from disparate sources and exploring 
regional trends in GPP across tidal wetlands.  
 

 

1. Introduction 
Tidal wetlands are a critical component of global climate regulation. Producers (primarily 
plant communities) in these ecosystems acquire carbon dioxide (CO2) from the atmosphere 
and assimilate the carbon into organic tissues (Taiz & Zeiger 2002). The assimilated carbon 
in these ecosystems is often referred to as ‘blue carbon’, as it is oceanic- or wetland-related 
(Mcleod et al. 2011; Lovelock and Duarte 2018; Windham-Myers et al. 2018, and references 
therein). A rough estimate is that these ecosystems may offset between 0.9% to 2.6% of total 
anthropogenic CO2 emissions globally (Murray et al. 2011). 
After first undergoing respiration and decomposition (Hopkinson et al. 2012; Bond-Lamberty 
et al. 2018), a portion of this producer-assimilated carbon is then sequestered into deep soil 
horizons (Chmura et al. 2003, 2013; Duarte et al. 2005) along with allochtonous sources 
(Bianchi et al. 1999, 2011, 2019). With continuous accretion of this material over time, soil 
carbon storage rates in some tidal wetlands are estimated to be 50 times greater than 
rainforests of a similar area, where the forest carbon storage occurs largely aboveground 
(Bridgham et al. 2006; Nelleman et al. 2009).. To properly assess regional and continental 
United States (CONUS) carbon budgets and their blue carbon potential (Hayes et al 2018), 
the atmospheric CO2 assimilation by tidal wetlands must be more accurately quantified.  

The Gross Primary Production (GPP) of a tidal wetland represents the total photosynthetic 
flux of CO2 between the atmosphere and the surface on a per land area basis before any 
respiratory fluxes back to the atmosphere are removed. This flux can be empirically modelled 
from direct site-specific eddy covariance (EC) measurements that record the Net Ecosystem 
Exchange (NEE) of CO2, and GPP can be estimated from these measurements (Reichstein et 
al. 2005; Lasslop et al. 2010). Conceptually, one way to estimate GPP is to find the difference 
of ecosystem respiration (𝑅𝐸) from measured NEE as:  

   𝐺𝑃𝑃 = −𝑁𝐸𝐸 + 𝑅𝐸     Eq. 1  
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While EC measurements provide invaluable information for measuring GPP and 
understanding functioning of an ecosystem, their spatial representation is limited from a few 
hundred meters to several kilometers. If we assume that the response functions observed in 
EC datasets are representative of larger landscapes, we can use those functions in spatial 
models to map GPP over broader spatial and temporal scales. Several radiation-based models 
have been based on the conceptual logic of light use efficiency (LUE, e.g., Monteith 1972), 
which suggests that GPP can be quantified as a function of how plants intercept and convert 
solar radiation into biomass, within the context of other climatic variables such as 
temperature and water availability. The most basic elements of the GPP relationship include: 

   𝐺𝑃𝑃 = 𝜀 ∗ 𝑖𝑃𝐴𝑅 ∗ 𝑓𝑃𝐴𝑅    Eq. 2 

where 𝑖𝑃𝐴𝑅 is the incident photosynthetically active radiation (PAR) that arrives above the 
plant canopy, fPAR is the PAR fraction intercepted by plant leaf surfaces (often modelled as a 
function of vegetation indices), and ε is a multiplicative LUE coefficient that determines the 
efficiency of converting light photons into biomass for a given plant type. The automated 
framework of Heinsch et al. (2003, 2006), Running et al. (2004), and Zhao et al. (2005) set 
the groundwork for mapping GPP at global scales using this basic formula with NASA's 
Moderate Resolution Imaging Spectroradiometer (MODIS) imagery providing the fPAR input 
(for example, producing NASA’s MOD17 as a GPP output product at 500 m or 1 km 
resolution).   

While NASA’s MOD17 product estimates GPP in some areas occupied by tidal wetlands, it 
suffers from several limitations, including: (1) ε and 𝑓𝑃𝐴𝑅 are not specific for tidal wetland 
plants. Tidal wetlands are either classified as ‘water’ or designated as a terrestrial ecosystem, 
though they may act differently (Rocha and Goulden 2009). For example, water inundation 
can affect both CO2 exchange (Kathilankal et al. 2008; Malone et al. 2013, Forbrich & Giblin 
2015; Zhao et al. 2019) and surface reflectance in short-vegetation wetlands, which is used to 
estimate vegetation indices and thus 𝑓𝑃𝐴𝑅 (O’Connell et al. 2017); (2) iPAR is derived using 
older meteorological products interpolated to relatively coarse resolutions (such as National 
Centers for Environmental Prediction (NCEP) II reanalysis), and moreover these do not 
incorporate sea-based weather station and buoy meteorological measurements that would be 
useful along coastal areas (Saha et al. 2014); and (3) the majority of tidal wetlands are 
distributed in narrow strips along the coastal boundary (Hardisky et al. 1986; Klemas 2011) 
at scales much finer than the resolution of the land cover classification algorithm/layer used 
by MOD17. This problem results in fPAR values that are mixed among multiple terrestrial 
plant cover types, yielding mixed GPP values, or alternately providing no GPP values in 
areas incorrectly classified as water.  

The overgeneralization of ε can be resolved by creating a set of equations that better describe 
LUE for tidal wetlands. In particular, Barr et al. (2013) used a Bayesian framework that 
described LUE as a function of temperature, light saturation, salinity and calibrated fPAR 
values using the Enhanced Vegetation Index (EVI) band of MODIS. Similar LUE models 
have been created for individual EC tower sites, often using calibrated Normalized 
Difference Vegetation Index (NDVI) or other similar metrics for fPAR (Ghosh et al. 2016; 
Schile et al. 2013). Still other LUE models have taken into account salinity (Heinsch et al. 
2004) or tidal inundation (Kathilankal et al. 2008; O’Connell et al. 2017; Tao et al. 2018). 
The uniqueness of the Barr et al. (2013) approach lies in the optimization of the LUE inputs 
that combine to define ε through the use of Bayesian statistics. This procedure makes it more 
suitable for a large-scale extrapolation. Still, no other method has combined this statistical 
approach with the flexibility to model GPP across other plant physiological types at both a 
fine spatial resolution and across the large spatial extent occupied by tidal wetland vegetation. 
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Our overall objective was to model tidal wetland GPP at 250 m scale, while also accounting 
for wetlands smaller than this area, across the entire CONUS. We quantified GPP and created 
maps at 16-day averages for the years 2000-2019. To accomplish this task, we built the Blue 
Carbon (BC) model, which modeled GPP in a spatially-explicit environment. The model was 
parameterized in a Bayesian framework using tidal wetland cover and EC tower data across a 
wide range of sites, and then was validated by comparing its output with additional EC tower 
data sets. Finally, we compared its output against NASA’s MOD17 products and other GPP 
estimates from the literature, and summarized key findings about GPP distribution. 

 

2. Methods 
2.1 BC model overview 
We built the Blue Carbon (BC) model using Google Earth Engine (Gorelick et al. 2017). To 
compute estimates of tidal wetland GPP at a given location and date, our approach with the 
BC model required an input for each of the variables outlined in Eq. 2. The model approach 
applied seven basic steps, resulting in GPP spatial map output and comparisons with other 
products (Fig. 1): 

First, specific types of wetlands were defined based on mapping data and EC-tower data 
availability (Section 2.2).  

Second, for modeling LUE, ε required extensive parameterization within a hierarchical 
Bayesian statistical framework (Section 2.3). This framework required us to develop LUE 
equations specific to tidal wetlands, and then find the optimal values of a set of characteristics 
that quantify the controls of light and temperature on EC-derived GPP. This framework used 
EC tower datasets at several wetland sites, with datasets spanning multiple years across all 
seasons (and thus the full range of possible light and temperature controls).  

Third, using the results from the Bayesian framework as the BC model inputs, the BC model 
then calculated Eq. 2 (Section 2.4). The iPAR inputs were derived from meteorological 
datasets. The fPAR inputs were derived from MODIS EVI datasets (MOD13Q1) at 16-day 
time intervals and at 250 m spatial resolution across the continental US.  

Fourth, we developed a unique spatial algorithm to solve the problem of ‘mixed pixels’ 
(Section 2.5). 

Fifth, we assessed the validity of the BC model by comparing its GPP predictions with field-
derived EC tower GPP (Section 2.6).  

Sixth, we mapped tidal wetland GPP over the relevant spatio-temporal extent and 
summarized the results statistically (Section 2.7). 

Finally, we compared the BC model with NASA’s MOD17 product (Section 2.8). 
 

2.2 Tidal wetland classes: Maps and flux data availability and processing 
We first identified the location of all tidal wetlands in CONUS and grouped them into four 
separate classes: (1) woody mangroves, (2) woody freshwater swamps, (3) herbaceous salt 
marshes, and (4) herbaceous freshwater wetlands. These four classes form a full factorial that 
includes all tidal wetlands. Our resulting high-resolution, vector-based dataset was composed 
of polygonal delineations. Hinson et al. (2017) contains more details on the underlying 
dataset (downloadable from bluecarbon.tamu.edu), which is itself a refinement of the 
National Wetlands Inventory (NWI) and as such its classification is based on the Cowardin 
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system (Cowardin et al. 1979). In short, the definition of a tidal wetland in this dataset is 
based on hydrologic considerations which are listed as specific modifiers (for example, semi-
permanently flooded tidal freshwater wetland; Federal Geographic Data Committee 2013). 

We then overlayed a MODIS grid on top of this vector dataset and found the area of each 
tidal wetland class within a 250 m pixel size. This step allowed us to identify the class-
affiliation and the percent of each pixel occupied by each class, at the 250 m scale. 

Using typical wetlands at sites that represented these tidal wetland types (Table 1), 
atmospheric fluxes of NEE were determined using the eddy covariance technique (Baldocchi 
et al. 1988; Heilman et al. 1999). The calculated fluxes were either downloaded directly from 
Ameriflux or provided by site Principal Investigators (PIs). With the exception of US-NC4, 
all sites experienced tidal hydrology (the hydrology of US-NC4 is classified as ‘seasonally 
flooded’ in NWI). In the absence of Ameriflux data associated with tidal freshwater 
environments, we approximated these classes with EC datasets representing similar species 
structure. Specifically, we used US-NC4 as a woody freshwater swamp class, but also US-
SRR as a herbaceous freshwater wetland class despite its higher salinity range (channel 
salinity of < 2-10 ppt, e.g., Knox et al 2018; tidal freshwater typically refers to < 2 ppt).  

NEE fluxes were first filtered for periods of instrument malfunctioning, insufficient 
turbulence (Foken et al. 2004, class 0,1), and outliers, as described in Papale et al. (2006). 
They were next partitioned into GPP and 𝑅𝐸, following Eq. 2. While nighttime 𝑅𝐸 was 
detected directly by the EC technique, daytime 𝑅𝐸 was entangled with GPP, requiring the 
choice of a partitioning algorithm. We used the nighttime partitioning approach by Reichstein 
et al. (2005) as implemented in REddyProc (Wutzler et al. 2018) to estimate GPP. We review 
the implications of this choice in the Discussion section below. 

 
2.3 Bayesian Framework for Light Use Efficiency  

The Bayesian framework was developed to statistically quantify the efficiency of a given 
tidal wetland plant to convert light photons into biomass. The goal was to quantify the 
relevant biophysical relationships that underlie Eq. 2 and develop ‘look-up tables’ for each 
unique wetland class that could be used later by the BC model. The basic concept of our 
Bayesian framework was to identify the prior probability distribution of values for a given set 
of parameters (light and temperature conditions) that were most likely to have resulted in a 
known posterior distribution (GPP values from field-based EC tower datasets). The code was 
developed in Matlab and WinBUGS (code available on bluecarbon.tamu.edu). 

 
2.3.1 Biophysical Relationships  

From Eq. 2, LUE can be determined as follows (Barr et al. 2013): 

   𝐺𝑃𝑃

𝑖𝑃𝐴𝑅
= 𝜀 ∗ 𝑓𝑃𝐴𝑅      Eq. 3 

Contrary to other approaches, 𝑓𝑃𝐴𝑅 was incorporated into the fitting and we utilize 𝐺𝑃𝑃

𝑖𝑃𝐴𝑅
 

instead of 𝐺𝑃𝑃

𝐴𝑃𝐴𝑅
 as the target (where 𝐴𝑃𝐴𝑅 is absorbed PAR), which limits the number of 

assumptions that must be made and reduces uncertainty. The purpose of this approach was to 
match the 𝑓𝑃𝐴𝑅 data stream that the BC model will have available to it, as described in 
sections below.   
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The mathematical form of the LUE equations and their key input parameters (𝜀0,  𝑇𝑚𝑖𝑛,  
𝑇𝑚𝑎𝑥,  𝑇𝑜𝑝𝑡, 𝑚𝑃𝐴𝑅 , and 𝑚𝐸𝑉𝐼) were defined as follows, with a more detailed explanation and 
rationale for model structure provided in Barr et al. (2013):   

   𝜀 = 𝜀0 ∗ 𝑓𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ∗ 𝑓𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛   Eq. 4 

where 𝜀0 is the maximum LUE value under optimum growing conditions, and 

   𝑓𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =
(𝑇𝑎−𝑇𝑚𝑖𝑛)∗(𝑇𝑎−𝑇𝑚𝑎𝑥)

[(𝑇𝑎−𝑇𝑚𝑖𝑛)∗(𝑇𝑎−𝑇𝑚𝑎𝑥)]−(𝑇𝑎−𝑇𝑜𝑝𝑡)
2  Eq. 5 

where 𝑇𝑎 is the temperature at a given location and time, 𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥 , and 𝑇𝑜𝑝𝑡 are the 
minimum, maximum, and optimal temperatures at which the plant type converts light into 
biomass; and 

 𝑓𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 1 − 𝑚𝑃𝐴𝑅 ∗ 𝑃𝐴𝑅  Eq. 6 

where 𝑚𝑃𝐴𝑅  describes the rate at which the plant class’s ability to convert energy into 
biomass saturates as the light intensity increases. This parameter was used by Barr et al. 
(2013) because they observed a decrease in LUE with increase in PAR in woody plants, but 
this behavior also occurs in herbaceous plants as well (Kathilankal et al. 2008). In addition, 

    𝑓𝑃𝐴𝑅 = 1 − 𝑒(−𝑚𝐸𝑉𝐼∗𝐸𝑉𝐼)   Eq. 7 

where 𝑚𝐸𝑉𝐼  details how EVI values increase as a function of the plant type’s canopy 
structure. This parameter is valuable particularly in the case of a woody ecosystem, such as 
mangroves or woody freshwater swamps, as it provides a fit between the apparent reflectance 
of the canopy surfaces seen at nadir and the actual quantity of photosynthetic surfaces 
throughout the vertical structure. This improves the accuracy of EVI as a predictor of changes 
in leaf area in tropical or forested regions, as compared with NDVI (Barr et al. 2012). In 
testing, we found that it improved the fit for herbaceous plants as well, though not as greatly 
as for woody. Eq. 7 has the desired properties of being constrained between 0 and 1 such that 
the fraction of PAR absorbed by vegetation cannot exceed 100%.  
 

2.3.2. Look-up tables 

Look-up tables were produced by finding the optimal fit for the key input parameters (𝜀0,  
𝑇𝑚𝑖𝑛,  𝑇𝑚𝑎𝑥,  𝑇𝑜𝑝𝑡, 𝑚𝑃𝐴𝑅 , and 𝑚𝐸𝑉𝐼) that fed into Eq. 3-7 to predict the posterior distribution 
of GPP. Four EC tower sites (Table 1) were used for parameterizing the Bayesian framework 
and producing look-up tables: US-SKR (representing mangroves), US-NC4 (woody 
freshwater swamps), US-PHM (salt marshes), and US-SRR (herbaceous freshwater 
wetlands). All other tower sites were not used at this stage of our work. The data from each of 
these four sites were segregated into parameterization versus validation datasets (Table 1). 
Once a look-up table was parameterized using several years of data, we validated it using the 
data from other years.   

Performance of the look-up tables was evaluated using the linear relationship between field-
derived GPP from the tower sites and that modelled by the Bayesian framework (slope and 
intercept), the coefficient of determination (r2), and the root mean square error (RMSE). It is 
important to note that at this stage of the framework, the Bayesian approach utilized the EC 
tower-recorded 𝑖𝑃𝐴𝑅 and temperature records as inputs to the equations (as opposed to the 
BC model described below, which used remotely-sensed or modelled inputs for these 
parameters). To find the best look-up tables for later use by the BC model, we tested:  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/root-mean-square-error
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(1) Using two tidal wetland classes (woody, herbaceous) versus the four wetland 
classes 

This test involved grouping the four classes into only two: woody (to include both woody 
mangroves and woody freshwater swamps) versus herbaceous (to include both herbaceous 
salt marshes and herbaceous freshwater wetlands). For each tower site in the four-class test, 
we randomly excluded one year of data for validation; the rest was used for parameterization. 
For the two-class set up, we randomly excluded two years of data for validation; the rest was 
used for parameterization. The reason behind this difference was that when grouping into two 
classes, there are more available data in each class and therefore more records are saved for 
validation while maintaining statistical robustness during parameterization. 

We found that the two-class woody-vs-herbaceous parameterization was more efficient and 
parsimonious than using the four wetland classes (Table 2). For both the woody and 
herbaceous class, the statistical fit and errors were approximately halfway between those of 
the more specific classes that comprised each group when they were run separately. This 
result suggests the appropriateness of grouping tidal wetlands based on similarities in 
anatomy. Further reasoning for using the two-class woody-vs-herbaceous grouping is that the 
sample size increased for both parameterization and validation datasets, and the fact that 
more of the additional ‘offsite’ validation datasets also became applicable to each grouping 
(as described in sections further below).  
We also tested groupings based on sub-tropical (US-SKR) versus temperate (US-SRR, US-
PHM, US-NC4) wetlands, mixed across anatomical categories, but the statistical 
relationships were weaker; in this case, the temperate group performed roughly similar in r2 
to its three constituent class sites, but the sub-tropical group matched the lower r2 values 
shown for this mangrove site in Table 2 (~0.65) as US-SKR was the only representative. The 
greatest uncertainty in LUE among all combinations of sites and classes was for the 
mangrove class, which was interesting given that the Bayesian approach has been refined by 
both the present study and Barr et al. (2013), and in addition this site has the largest number 
of observations among all EC tower sites. The fact that US-SKR was consistently lower in r2 
suggests that tropical wetlands outside of the CONUS and outside the scope of this study, 
with still more consistent green leaf cover year-round, could prove even more difficult to 
model for GPP.  

(2) Including a light saturation coefficient in the look-up tables. 

We tested for and found a large benefit to quantifying the effect of light saturation in woody 
canopies, particularly for mangroves, when including the 𝑚𝑃𝐴𝑅  parameter (Table 2). Canopy 
light saturation to photosynthesis was not strongly observable in any herbaceous class or 
group, though including this parameter slightly increased the r2 values. To maintain 
consistency of the table structure across groupings, and to protect against the possibility that 
light saturation could still occur at unparameterized sites (neither of the parameterized sites 
US-SRR and US-PHM are in the southern part of the US, where there is consistently higher 
PAR), we decided to move forward with using the 𝑚𝑃𝐴𝑅  parameter for all classes.  

(3) Using the median of the distribution from the look-up table  

When investigating the distribution of 𝜀0, we found it to be skewed to the right. Moreover, 
we found that the performance of the tables increased when using the median value of the 
Bayesian-derived distribution for the other parameters as well, as opposed to using the mean 
for these parameters; this was particularly true for the mangrove cover class and accordingly, 
the woody grouping (Table 3). We thus chose to move forward with the median look-up table 
values, as was done in Barr et al. (2013). 
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(4) Excluding salinity and tidal inundation 
Salinity and tidal inundation depth were not included as parameters in the final framework, 
though we tested and constrained their potential contribution to improving accuracy. Both of 
these variables vary at fine spatial and temporal scales, complicating their inclusion. For 
example, inundation frequency and duration were different for each site, depending on site 
elevation, vegetation height and tidal amplitude, and they cycled at higher frequencies than 
the 16 days of constraining MODIS datasets. Similarly, salinity can spatially vary greatly 
over a few meters and fluctuate quickly with rainfall or the tidal cycle. No standardized 
approach has been developed to partition the contribution of these variables to NEE fluxes in 
tidal wetlands, and no input streams currently exist that can provide mapped inundation or 
salinity at the scale of the other parameters, at least for a manner applicable across broad 
spatial scales. 

To estimate the effect of salinity and the error induced by excluding it from the BC model, 
we assessed the differences in the parameterization at the US-SKR site (Barr et al. 2013) and 
the US-PHM site (Forbrich et al. 2018). We found no added measurable benefit to including 
salinity into the framework when predicting GPP (Table 3, only US-SKR data shown). This 
finding was somewhat surprising, and led us to ask why excluding it did not make an 
important difference, which we review further in the Discussion section below.  

 
2.4 Running the BC Model 

To calculate ε in Eq. 3. across all tidal wetlands in the CONUS, the BC model used the final 
optimized look-up table values (Table 4). The optimal LUE model defined only two tidal 
wetland classes (woody, herbaceous), used the median values from the Bayesian-derived 
distribution and fed them into Eqs. 3-7.  These two classes were quite similar in 𝑚𝐸𝑉𝐼  and 
temperature-related variables, though the LUE coefficient 𝜀0 varied greatly. This result 
emphasizes that the primary difference among the woody and herbaceous classes was LUE; 
this is of benefit for modelers because there is relatively high confidence in the ability to 
delineate woody versus herbaceous plant cover using imagery (as opposed to lower 
confidence in the case of the four-class parameterization, where one must sort various classes 
based on salinity which can be more difficult to map).   

For  𝑖𝑃𝐴𝑅 in Eq. 3, we used the NCEP Climate Forecast System Version 2 6-hourly products 
(CFSV2).  These products were created in 2011 and contain improvements on the NCEP 
Reanalysis II products used by MOD17 and Barr et al. (2013). These improvements are 
primarily due to the integration of terrestrial and marine datasets (Saha et al. 2014). We 
obtained the downward solar radiation flux at 6 hour intervals (imagery layer name in Google 
Earth Engine: Downward_Short-Wave_Radiation_Flux_surface_6_Hour_Average), summed 
them for each 24 hour period and divided by 4, and then found the proportion that is available 
in the visible portion of the spectrum as PAR (*0.45) to obtain the daily light integral in 
Watts m-2, and finally converted values into units of mol m-2 d-1 (*4.57*106*86400).  We also 
obtained the temperature at 2 m of height above the ground for each day 
(Temperature_height_above_ground). The CFSV2 dataset inputs were then interpolated to 
match the grain size of the imagery discussed below, following methods similar to Zhao and 
Running (2005).  

To find 𝑓𝑃𝐴𝑅 in Eq. 3, which is specific to each location and time across the CONUS, we 
chose the EVI band of the MOD13Q1 16-day MODIS-satellite product as this was available 
at 250 m resolution (Didan et al. 2015), and thus was best able to resolve relatively fine-scale 
wetlands. Following Zhang and Running (2005), we identified the pixels that were obscured 
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by clouds, smoke, or ice using the Pixel Reliability band. We then removed those pixels and 
gap-filled them by using the average of values from the preceding and following dates. Some 
areas of wetlands fell outside of the MOD13Q1 extent, due to usage of the MODIS water 
mask product upstream in NASA’s MODIS processing suite of products. We noted that this 
phenomenon appeared to be primarily limited to the southern Atlantic Coast wetlands, such 
as in Georgia or South Carolina, and varied with time in the MOD13Q1 product, in that a 
single pixel would be included for almost all imagery dates, and yet would drop out on a 
particular date. In these cases, we resolved this issue using the approach described below in 
the section on pixel purity. Similarly, the MOD13Q1 product can present abnormally low or 
high EVI for a pixel, presumably because of abnormal reflectance from the ground, or from 
sensor or algorithmic error, captured by the upstream NASA product MOD09Q1 and then 
inherited by MOD13Q1. In these cases, the abnormal values are constrained and minimized 
by the functional limits provided by Eq. 7 for 𝑓𝑃𝐴𝑅.   
 
2.5 Pixel Purity and Spatial Interpolation  

Tidal wetlands are often linear in their areal geometry, arranged parallel to the coast, and 
many are smaller than a single 250 m pixel. The result is that a pixel can be spectrally-mixed, 
with multiple plant or land cover types interspersed with one another. For example, within a 
single 250 m pixel, there could be a small wetland, a road, some cropland, and some 
impervious surface. To correctly calculate GPP, one would prefer that this pixel be 
homogeneous because each of the cover types has a different set of biophysical responses for 
Eqs. 3-7. One approach is to exclusively use homogeneous pixels, but this would not capture 
the majority of the tidal wetland areas within the US. The disadvantage to calculating GPP in 
mixed pixels is that one degrades the accuracy of the estimate, while the disadvantage to 
using only homogenous pixels is that one loses the ability to account for the total GPP across 
all wetlands.   
To address this challenge, the BC model was optimized at a level of ‘pixel purity’ for which 
these two competing interests were balanced. Pixel purity is defined as the percent of a pixel 
that was covered by a given tidal wetland class (accomplished by overlaying the 250 m 
MODIS footprint with the vector-based Hinson et al. (2017) dataset described earlier). All 
work on the pixel purity portion of the BC model was performed for the two classes 
separately, woody and herbaceous. At a later stage as described below, the resulting GPP 
from the entire procedure was combined for the two classes based on their proportional 
coverage within each pixel.  

We found the optimal pixel purity level to be greater than or equal to 80%. We then ran the 
BC model to find GPP using only those pixels that exceeded the purity test (≥80%), and then 
spatially interpolated the GPP results across the remaining pixels of similar class (<80%).  
The purpose was to optimize the accuracy of the GPP estimate using high quality tidal 
wetland pixels, and transfer these values across distance to lower quality pixels, while also 
not overextending the ability of those transfers to be valid. The Inverse Distance Weighted 
(IDW) method was used with a power of 2, to minimize the required assumptions (Issaks and 
Srivastava 1989). However, before finally settling on the 80% threshold, we performed 
several tests across multiple levels of purity (every 10% from 0 to 100), and estimated the 
assumptions and errors of each. These tests sought to identify:  

(1) The spatial distances across which interpolation could optimize the GPP while 
minimizing errors 
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Our primary goal here was to obtain quality estimates of GPP from relatively pure tidal 
wetland pixels and interpolate those values into mixed-class pixels that contain smaller 
fractions of wetlands. However, we also wanted to know the cost in terms of accuracy of 
conducting this interpolation. For the woody and herbaceous classes separately, we used 
semi-variograms to quantify the spatial variability of GPP across distance. A semi-variogram 
is a geostatistical tool often used to identify spatial autocorrelation, to test Tobler’s law of 
geography that ‘things that are closer together are more related than things that are farther 
apart’, or to detail the spatial structure of variance (Issaks and Srivastava 1989). In this 
instance, a semi-variogram can clarify the distances over which interpolation is most valid, 
and the mean error induced by conducting the interpolation. The standard equation is: 

 𝛾(ℎ) =
1

2|𝑁(ℎ)|
∑ |𝑧𝑖 − 𝑧𝑗|

2

(𝑖,𝑗)𝜖𝑁(ℎ)     Eq. 8 

where 𝛾 is the semi-variance at scale bin h, z denotes the GPP value for two points in a pair of 
points i and j that are separated by a distance that falls within scale bin h, and N(h) is the 
number of all possible pairs within h. For a given scale of inquiry, Eq. 8 finds the squared 
differences between all paired values and standardizes them by the number of pairs times 
two; this provides a measure of dataset variance at multiple spatial scales. We performed this 
analysis using all pixels for July 12, 2018 across CONUS, as this time of year coincided with 
the average annual peak in GPP at a national scale and would provide the greatest amount of 
variance in the dataset. 

We found that the woody class was the limiting class, with a minimum semi-variogram range 
at ~12 km and a secondary range at ~65 km (Fig. 2a). From here forward for all subsequent 
tests, we only describe the woody class test results at the 80% threshold and on the July 12, 
2018 date. Interpolating GPP from the ≥80% pixels to the <80% pixels across distances less 
than 12 km provides ~3 times more accurate results than randomly drawing a GPP value 
from the ≥80% pixels (sill of ~0.012 is ~3 times larger than nugget of ~0.004). At distances 
greater than 12 km but less than 65 km, the interpolation provides ~2 times more accurate 
results (sill of ~0.020 and nugget at 12 km of ~0.012).   

It is important to point out that even if an interpolation were to occur across distances greater 
than 65 km, the GPP value would still be constructed and arrive from pixels that were ≥80% 
tidal wetland. This situation would be far preferable to using a GPP estimate when the 
majority of the area of the pixel was of a non-tidal wetland class (for example, incorrectly 
assuming the GPP is a valid prediction when in fact the majority of the pixel is of water or an 
urban area). 

(2) The distribution of the low purity pixels as a function of distance from high purity 
pixels 

The large majority of low purity pixels are within a relatively close distance to high purity 
pixels (Fig. 2b), suggesting that in most cases interpolation only need to occur across short 
distances. For example, in the case of the woody class using the 80% threshold, over 89% of 
the <80% pixels had a nearest neighbor ≥80% pixel of less than 12 km. Over 98% had a 
nearest neighbor of less than 65 km. Moreover, the few pixels that were forced to accept 
interpolated values from a relatively far distance, were quite low in their percent cover of 
tidal wetlands (Fig 2b); in other words, the total quantity of GPP at a national scale that had 
to be interpolated over distances greater than the secondary range of confidence (~65 km) 
was quite small. 

(3) The relative correction in GPP afforded by interpolation 
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For pixels <80% purity, the nearest neighbor that is ≥80% often has a relatively higher GPP 
in most cases (Fig. 2c). In some pixels with <80% purity, there are some abnormally high 
GPP estimates as compared with their nearest neighbor that is of higher purity (circles on the 
upper left side of the 1:1 line and those on the far left side in Fig. 2c; interpolation would 
presumably correct these overestimates. Other <80% purity pixels appear abnormally low 
(circles on the lower right side of the 1:1 line and along the bottom of the graphic in Fig. 2c), 
though in these cases we cannot discern whether this relatively lower value is due to the 
percent cover of the wetlands also being lower or the actual GPP estimate itself.   

We next sought to identify the extent to which the final interpolated product improved the 
GPP estimates. Because there were no additional validation datasets available outside of the 
ten EC tower sites, and relatively few of those sites resided in pixels with <80% purity, we 
had to develop an alternative method to quantify the effect of the interpolation on relatively 
isolated or low purity pixels. Thus, we removed all GPP predictions by the BC model within 
a 12 km buffer of the latitude and longitude of each of the ten tower sites (as noted above, 12 
km was the limiting distance for the woody class to obtain benefit from interpolation, 
wherein we obtained a three-times better estimate than a random draw from the rest of the 
≥80% GPP dataset greater than this distance). After removing all pixels within 12 km, we 
then re-implemented the 80% threshold interpolation procedure. 

Whether spatial interpolation was performed by the BC model in the standard case, or 
performed after removing all pixels within 12 km of each EC tower site, the predicted GPP 
by class was multiplied by the percent cover of each class in the pixel for the woody and 
herbaceous classes separately, and then the two were summed to find the GPP in each pixel. 

 
2.6 Validation  

The BC model output was validated by comparing its predicted GPP with field-derived GPP 
from the ten EC tower sites (Table 1). For four of the tower locations, some years were used 
during parameterization of the Bayesian model (designated ‘P’ in Table 1), while other years 
were used for validation (designated ‘V’ and ‘N’). For the other six ‘offsite’ locations, all 
data was used only at the validation stage (designated ‘O’). The BC model performance was 
evaluated using linear regression and standard metrics for goodness-of-fit.  

This comparison occurred using a single BC model pixel that covered the latitude and 
longitude position of the EC tower. We tested the effect of using multi-pixel footprints and at 
distances varying from 250 to 50,000 m in radius, using the US-SKR site as a test case. To 
generalize, the cost was spatial accuracy when using a larger number of pixels across a wide 
radius and averaging the GPP values for comparison, but the benefit was to smooth temporal 
spikes or slight errors by leveraging the power of a larger set of pixels from which to obtain 
the estimate. However, the true differences among the various tests was quite small. Based on 
these tests, we used the single pixel approach as it was the most parsimonious. 

 
2.7 Summaries of GPP 

After validation of the BC model, GPP was mapped across the CONUS at 16-day intervals 
for the years 2000-2019. Daily average per m2 GPP and total annual GPP were calculated 
within individual tidal wetland pixels, across the entire CONUS.   
In addition, the quantities within the tidal wetland pixels were summarized for three oceanic 
coasts (Gulf of Mexico, East Atlantic, West Pacific), individual states, and for 291 estuaries 
(EDAs) and coastal drainages (CDAs) in NOAA’s Coastal Assessment Framework (CAF; 
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NOAA 2018). The daily average per m2 GPP was derived by averaging all of the tidal 
wetlands’ pixel values contained within the given area of a coast/state/EDA/CDA, whereas 
the total annual GPP quantity was found by summing all of these values in the given area.  

Importantly, the values reported for a geographic unit are not averaged relative to the total 
area of each unit, but rather only for the tidal wetlands area within each unit.  Further, the 
extrapolation of pixel values across the geographic unit plays no part in this process.  As an 
example, if the average tidal wetland GPP in a given state was reported as 5 g C/m2/day, this 
was simply the average for the tidal wetlands that were found within the state.  The same 
procedure applies to the sum of GPP - the GPP sum is not extrapolated to the unit extent 
under an assumption that all of the area within the unit would be tidal wetlands – rather, the 
value is simply the sum of the tidal wetland GPP that exists in the unit. The 
coasts/states/EDAs/CDAs are solely geographic areas wherein we can talk about the tidal 
wetlands within them – the entirety of each is not composed of tidal wetlands.  We 
summarized these values and reported statistical quantities such as the means and standard 
deviations. 
 

2.8 Comparison with Other Products 
The BC model was compared against the most up-to-date NASA MOD17 GPP product, 
MOD17A2H.006. The goodness-of-fit between the MOD17 product and the EC tower data 
was evaluated using linear regression and standard metrics. 

 
3. Results  
3.1 Validation  
For validation of the BC model, it made little difference whether the field-derived EC tower 
data was limited to only the six ‘offsite’ towers (n=260 unique 16-day periods linearly 
regressed among all combined sites for r2=0.79, p<0.001, RMSE=1.23 g C, with average 
error 19% off true value; group ‘O’ in Fig. 3a) or included all ten tower sites (n=522, r2=0.83, 
p<0.001, RMSE=1.22 g C, average error was 7% off true value; groups ‘O’, ‘V’, and ‘N’ in 
Fig. 3b). The strong fit in the former case suggested that the BC model described the variance 
in GPP quite well for new locations. In the latter case, validation data were included from the 
original four sites, but came from separate years in the record and was not used during 
parameterization of the Bayesian framework. If the validation effort included all data 
available to us (even those data used during parameterization of the Bayesian framework, for 
the purpose of developing the look-up tables that were later used by the BC model – 
importantly, this data is not equivalent and has differing inputs generating it for the 
framework versus the model, as described in Section 2.3.2), the result was generally the same 
(n=692, r2=0.83, p<0.001, RMSE=1.20 g C, average error was 6% off true value; groups ‘O’, 
‘V’, ‘N’, and ‘P’ in Fig. 3c).   

Given the consistent fit between BC modelled and field-derived EC GPP in each instance, the 
BC model was considered relatively robust across differing tidal wetlands. Still, it was clear 
that the model captured the behavior of particular class types and tower locations better than 
others after further inspection of the second case mentioned above (using all validation data 
only, i.e. ‘O’, ‘V’, and ‘N’),. For the woody class in particular, the model tended to match 
well at lower levels of GPP, over-predict GPP at moderate levels of GPP, and under-predict 
at higher levels (Fig. 4a).  
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The model also performed slightly different for each tower (Fig. 4b, Fig. 5). Most notably, all 
observations at the US-LA1 tower in Louisiana were over-predicted. If we removed the US-
LA1 tower from the dataset, then the r2 values increased an additional ~0.05 and the average 
error was approximately halved, for each of the statistical tests described above. Several 
observations at the GCE tower in Georgia and the US-SRR tower in California were over-
predicted at their respective higher GPP levels, and observations at US-VFP in Virginia and 
US-STJ in Delaware (in one year) were under-predicted. The reasons are likely unique in 
each case. For example, US-LA1 is eroding relatively quickly and US-SRR contains non-
wetlands in its footprint depending on wind direction. Or, in the example of US-STJ, the BC 
model does better in some years than others. An extensive assessment of the specific details 
for each tower are outside the scope of the present study, but may prove fruitful ground for 
future study. In sum, the BC model tended to over-predict GPP slightly at high GPP levels 
yet under-predict GPP slightly at low GPP levels. Still, the slope of the linear regression of 
the BC modelled versus field-derived EC GPP was relatively close to 1:1 (0.97 slope with 
intercept of 0.24, using ‘O’, ‘V’, and ‘N’ only), demonstrating low bias in either direction.  
When we intentionally removed all pixels within 12 km of an EC tower and interpolated 
across that distance, the fit decreased (n=478, r2=0.76, p<0.001, RMSE=1.47, average error 
was 7% off true value; using groups ‘O’, ‘V’, and ‘N’ only; Figs. S1-S2). There was a 
decrease in internal model precision (r2 decreased) and the magnitude of the difference from 
the EC tower data was larger (RMSE increased), but since the dataset was slightly different 
(the US-NC4 dataset was not included due to a practical issue) the average error was not 
substantially different. The BC model also over-predicted more strongly in this case (slope of 
0.89).  
Interpolation also provided an additional correction for CONUS-scale work. While the BC 
model included all tidal wetlands mapped by Hinson et al. (2017), the MODIS EVI 250 m 
resolution product did not provide data for all of them. The upstream NASA product 
MOD09Q1 removed many pixels where there were indeed tidal wetlands, designating them 
as ‘water’ in its masking procedure, and this issue was then inherited by MOD13Q1. 
Approximately 24.5% of the available tidal wetland pixels are incorrectly removed by the 
NASA MODIS products (often containing the smaller sized wetlands with less average GPP 
than the rest of the dataset), and this results in a 16.8% under-estimation of GPP at the 
CONUS scale (in addition to the more general errors introduced by the MOD17 algorithm). 
We arrived at this value by comparing a summarization of the GPP for the interpolated maps 
versus the non-interpolated maps. Our interpolation procedure solved this problem by 
populating these pixels.   
 

3.2 Summaries of GPP  
The BC model analysis found that between 2000 and 2019, the average daily GPP per m2 of 
tidal wetland cover across all CONUS locations and dates was 4.32 ± 2.45 g C /m2/day (Fig. 
6 and 7; values represent the mean ± standard deviation among the 16-day periods). The 
average maximum across all CONUS locations (i.e., the max among 16-day periods, across a 
given year) was 7.92 ± 0.32 g C /m2/day, reaching maximum values in June or July every 
year, except for 2011 when it peaked in late May. The average minimum across all CONUS 
locations (i.e., the min among 16-day periods, across a given year) was 1.00 ± 0.12 g C 
/m2/day, and lowest in late December or early January every year.  
The total annual tidal wetland GPP for the entire continental US was 39.65 ± 0.89 Tg/yr (Fig. 
8; mean ± standard deviation among the years). The total annual GPP for the Gulf, East and 
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West Coasts was 25.75 ± 1.14, 13.28 ± 0.64, and 0.62 ± 0.04 Tg/yr respectively. The quantity 
of GPP in the Gulf Coast was nearly double that of the East and West Coasts combined.  

The state of Louisiana alone accounted for 15.78 ± 0.75 Tg/yr. Florida was second at 7.27 ± 
0.24 Tg/yr. All other CONUS states, excepting Florida, added up to 16.60 ± 0.84 Tg/yr, a 
value nearly equivalent to Louisiana. In fact in 2004, the estimated total annual GPP in 
Louisiana alone was more than that for the rest of CONUS excepting Florida. The relatively 
high quantities for Louisiana and Florida were due to both the large areal coverage of tidal 
wetlands and higher average daily GPP per m2 (both can be seen in Fig. 6).  

The Atchafalaya/Vermillion Bay estuarine basin had the highest total annual GPP at 4.72 ± 
0.14 Tg/yr (Table 5, Fig. 7a) out of the 291 total EDAs/CDAs in NOAA’s CAF framework. 
Ranking these in order going from the highest total annual GPP to the lowest, several other 
bays in Louisiana, Chesapeake Bay on the US Mid-Atlantic, and the North and South Ten 
Thousand Islands region in the Florida Everglades also ranked in the top 20. Thirteen of the 
top 20 on the list were on the Gulf Coast, and the other seven were on the East Coast. The 
West Coast was not represented until San Francisco Bay, number 35 out of all 291 basins. 
 

3.3 Comparison with NASA’s MOD17 
As compared to NASA’s MOD17 GPP product, the BC model provided a better fit to the 
observed GPP at all tower sites (Fig. 5). The BC model explained the variation in GPP about 
twice as well as MOD17; the MOD17 fit was relatively weak (n=692, r2=0.45, p<0.001, 
RMSE=3.38 g C, and its average error was 15% off true value). The slope of the relationship 
deviated further from a 1:1 line (0.93) and the model intercept was quite a bit larger (1.02). 
The MOD17 product exhibited abnormal positive spikes in GPP at several sites, particularly 
in summer months when GPP was relatively high (Fig. 5). The BC model avoided these 
spikes, likely because of the functional limits on GPP provided by the 𝑚𝑃𝐴𝑅  and 𝑚𝐸𝑉𝐼  
parameters (MOD17 does not include these parameters). MOD17 occasionally presented 
abnormally low values, which the BC model avoided as well. The BC model worked much 
better at the US-SKR woody mangrove site in Florida.  

Perhaps most notably, the BC model was able to capture the trend at the GCE herbaceous salt 
marsh site in Georgia and the US-LA1 herbaceous salt marsh site in Louisiana reasonably 
well, while the MOD17 model predicted zero GPP due to its lower resolution and inability to 
adequately resolve the spatial nature of fringing tidal wetlands (NB: Tao et al. 2018 show a 
MOD17 value for the GCE site, though it is actually acquired from another pixel within the 
tower footprint that was more homogeneous in wetland cover). These two instances highlight 
the problems with MOD17 and other products that do not account for mixed pixels or small 
wetlands. 

MOD17 estimated the average daily GPP per m2 as 7.96 ± 3.93 g C /m2/day (as compared to 
4.32 ± 2.45 by the BC model). However, because it also incorrectly removed 24.5 % of the 
available tidal wetland pixels, it calculated the total annual GPP for the entire CONUS as 
50.04 ± 3.94 Tg/yr (versus 39.65 ± 0.89 Tg/yr for the BC model). In other words, MOD17 
appeared to get a somewhat reasonable answer, but only because these two factors counter-
acted each other numerically. Across each of the metrics that we tested, MOD17 results had 
much greater variance and mean bias than that of the BC model.  
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4. Discussion  
4.1 Comparisons with Other Studies 

There have been no previous studies that have calculated GPP across all tidal wetlands in the 
continental US. However, Najjar et al. (2018) found a rough estimate for net uptake by tidal 
wetlands, for the East Coast and Canadian portions of the Gulf of Maine, to be 5.3 ± 1.5 
Tg/yr. The BC model calculated GPP as 13.28 ± 0.64 Tg/yr for ~98% of this tidal wetland 
area (excluding the Canadian portions). Assuming the difference is due to respiration and 
lateral flux of dissolved inorganic carbon (DIC) into the water column ((13.28 * 0.98) - 5.3 = 
7.7), this would require 𝑅𝐸 plus the lateral flux to be on the order of 58% of GPP for this area 
(7.7 / 13.28 = 58%). Average annual  𝑅𝐸 is likely higher based on our experience, closer to 
80% of GPP, and the lateral flux is largely unknown (though some ranges are available in 
Bianchi et al. (2019)). The difference suggests that the Najjar et al. (2018) value is too high, 
which could be due to the mass-balance, literature-review approach used in Najjar et al. 
(2018). 
In the future, the BC model output could be compared with aboveground biomass datasets, 
particularly those using calibration-grade, national level datasets such as Byrd et al. (2018). It 
could also be compared with belowground carbon burial estimates (see Fig. S3 for an 
example), made for the purposes of the US National Greenhouse Gas Inventory (Hinson et al. 
2017; Crooks et al. 2018; Holmquist et al. 2018). Regional studies could also provide fertile 
ground for cross-comparison (Ghosh et al. 2016). 
Due to the absence of other CONUS-scale GPP studies to compare against, we developed a 
heuristic calculation.  This calculation is essentially a first-order, Tier 1 approach (EPA 2017; 
Hiraishi et al. 2014), where we assumed that a central value is appropriately representative 
(e.g., Holmquist et al. 2018). We first found the average GPP from the observed EC tower 
datasets that we had combined at 16-day intervals, obtaining 3.80 g C/m2/day (n=709), a 
value below that of the BC model (4.32 g C/m2/day). We then multiplied this average by the 
total area of the tidal wetlands, or 24,946 to 26,818 km2, and the number of days. The first 
value for area is from Hinson et al. (2017) and is the quantity for all tidal wetlands used by 
the BC model, and the second is from Windham-Myers (2018), both of which are similar to 
Bridgham (2007).  
This resulting 34.63 to 37.23 Tg/yr was ~10% below that of the BC model value, because the 
heuristic calculation used the average from ten sites to calculate the GPP alone, and these 
values were not appropriately area-weighted for CONUS-scale work. For example, 54.6% of 
CONUS tidal wetlands are in Florida and Louisiana (data from Hinson et al. 2007’s Table 
S2), yet only 26.5% of the EC tower dataset values came from these states. One would have 
to find a quite large number of EC tower sites to appropriately represent the productivity 
across areal coverage of CONUS wetlands, in order to begin to make a reasonable heuristic 
calculation. The BC model eschews the heuristic and extrapolative approach, and rather 
identifies the unique LUE and GPP response for each pixel independently, only using the EC 
tower data to build an understanding of LUE through the Bayesian framework. Moreover, the 
BC model has the advantage of allowing one to visualize the variance in spatial and temporal 
patterning at finer scales. 
Maps of the spatial and temporal variability are required to understand how GPP responds in 
a changing environmental context (Fig. 9). Stressors such as tropical cyclones, relative sea 
level rise, freezes, and drought do not occur continuously in space or time. With detail, the 
BC model can detect the effects of these stressors on tidal wetlands, over a large range of 
dates. For example, one could explore the effect of tropical cyclones on tidal wetlands using 
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an ‘economy-of-scale’, ‘big data’ style approach by mapping the changing GPP before and 
after these storms. Due to the voluminous nature of the final product, GPP for any tidal 
wetland at 16-day intervals, the BC model products allow scientists to formulate hypotheses 
and ask new questions in ways that were not formerly possible.  

 
4.2 Optimizing the Choice of Wetland Classes 

One direction for BC model improvement is to further optimize the choice of wetland classes.  
As more EC tower sites become available for and from the research community, the 
statistical benefit to creating more specific biophysical classes increases. A drawback to our 
current validation efforts was that we could not validate with ‘offsite’ towers for the woody 
class, but rather were limited to cross-year validation, though across both herbaceous and 
woody classes we had six of these ‘offsite’ tower locations. The situation became even more 
limited when considering the four-class system of woody mangroves, woody freshwater 
swamps, herbaceous salt marshes, and herbaceous freshwater wetlands. However, at least 
initially, our results show that the primary behavior of tidal wetlands was adequately captured 
by herbaceous versus woody categories alone. 

The reality is that more towers are required to more finely parse the biophysical classes or to 
build geographically-dependent classes. In particular, more EC towers are needed in tidal 
freshwater swamps, as they compose a fair quantity of tidal wetlands and are unique in 
physiology.  Other interesting options include unvegetated and wind tidal-influenced salt flats 
or salt pans, and mud flats. With more EC tower datasets, C4 grasses and C3 
succulents/rushes could be parsed into separate categories. We initially tried to include a 
succulent class based on Batis maritima from an EC tower in Texas, US-TX9, but the dataset 
was not workable due to a low number of observations.  

In terms of geography, the GPP in the three southernmost herbaceous sites (US-VFP in 
Virginia, GCE in Georgia, and US-LA1 in Louisiana) was not modelled as well as the other 
herbaceous sites; US-VFP was under-predicted and GCE and US-LA1 were over-predicted 
(Figs. 4 and 5). The look-up table produced by the Bayesian framework for the herbaceous 
class was determined based on wetlands from differing climate zones (US-PHM in New 
England, and US-SRR in California) and parameters like the optimum temperature may not 
have been well described. However, the fact that one site is under-predicted and the other two 
over-predicted speaks against physiological constraints as the reason for the mismatch 
between EC tower data and the BC model. Another possible factor could be the difference in 
reflectance from the more northern sites versus the more southern sites (Bartlett et al. 1988), 
such that 𝑓𝑃𝐴𝑅 was not well described in southern marshes in our model. We also noticed 
that the seasonality (in both EVI and GPP) was pronounced in US-PHM and US-SRR, which 
were used for our parametrization, while the peak values in the southern marshes were lower. 
Thus, a lower signal to noise ratio in these input variables may lead to a larger uncertainty at 
these sites.   
 

4.3 Standardizing EC Tower Measurements for Modelling Purposes 
It should be pointed out that field-derived EC tower data should not be considered the ‘gold 
standard’ for validation efforts, as they are not directly empirical. EC tower data is modelled 
based on empirical measurements. Thus, the variance and error described in the ‘validation’ 
procedure is not solely due to the BC model. The EC tower measurements and data 
manipulation also may be responsible.  
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Although some standardized approaches have been adopted within the EC community, there 
is still no consensus about the ‘best’ way to measure NEE. The instruments used to measure 
often vary from one site to the next, and the integrity of the data depends on calibrations, 
maintenance, and user error. The footprint of each tower can also vary both spatially and 
temporally with wind speed, direction, and surface properties. Each tower site has a different 
percent cover of tidal wetland plants, a different mix of additional cover types, and a different 
degree of spatial heterogeneity among these cover types.  
Moreover, the modelling of the measurements taken from a tower are only reliable under a 
set of predetermined conditions. The choices made by the investigators about how to adjust 
for more complex conditions can vary for each EC tower site. For example, assumptions can 
fail during daytime unstable conditions when wind speeds are very low, or during nighttime 
stable conditions where low or zero turbulent transport occurs but where other processes are 
often present (e.g., mesoscale contributions, flow meandering). Filtering the data series can 
remove these types of events, but if then replaced by estimates from windier conditions, the 
fluxes can be under-estimated. Investigators must decide whether to include or discard data 
acquired from the times surrounding sunrise and sunset, and they must also decide how to 
handle data from the back of the tower.  
The choice of how to partition NEE is also critical. We chose the partitioning nighttime 
partitioning approach by Reichstein et al. (2005) as implemented in REddyProc (Wutzler et 
al. 2018) for all ‘offsite’ locations with the exception of US-HPY (which we obtained already 
partitioned), but there are other possible approaches. Other methods use light response curves 
to fit daytime data, and the 𝑅𝐸  can be estimated as the offset (Lasslop et al. 2010). In the 
future, the overall fit between the EC tower data and BC model could be improved by using 
such methods since the Bayesian look-up tables are also tuned for LUE. In this sense, the 
variation due to partitioning the 𝑅𝐸 component likely contributes the greatest uncertainty to 
our field-derived EC tower GPP (Desai et al. 2008; Wehr et al. 2016).  
To extend the BC model to include Net Primary Productivity (NPP), it would be necessary to 
add an autotrophic respiration module, possibly using a similar framework as for GPP. This 
would need to be added and then the remaining parameters in Eq. 1 would be spatially 
modelled, including 𝑅𝐸, – 𝑁𝐸𝐸, and Net Primary Productivity (NPP). A standardized 
approach focusing on the adequate representation of all sources of respiration would be 
valuable (e.g., Barba et al. 2018; Keenan et al. 2019) and improve both EC tower and BC 
model datasets. 

An integrative approach such as the present study demonstrates the importance of 
standardizing EC measurements and modelling. Efforts toward such standardization will 
ultimately benefit the scientific community.  
 

4.4 Improving the Bayesian Framework 
Additional variables could also be included into the Bayesian framework. These could 
include water inundation level similar to O’Connell et al. (2017) or salinity similar to Barr et 
al. (2013). At least based on the tests that we conducted herein, these parameters are likely to 
provide minimal improvement, relative to the effort required to create national-level mapping 
products that could accurately express these values at 16-day temporal resolution.  

We found no added measurable benefit to including salinity into the Bayesian framework 
when predicting GPP (see the section on look-up tables). This finding was somewhat 
surprising, and led us to ask why excluding it did not make an important difference. A 
possible explanation is that salinity co-varies with another factor, for example leaf area index 
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and 𝑓𝑃𝐴𝑅, such that salinity does not add explanatory power to the model. Alternately, the 
salinity effect is delayed in time beyond the 16-day window used to drive the BC model. At 
US-SRR, Knox et al. (2018) showed no instantaneous effect of an increase in salinity on 
daily LUE, and similar findings have been seen at US-STJ. However at US-PHM, US-SRR, 
US-SKR, and GCE, variation in salinity appears to drive interannual variation in GPP (e.g., 
Wieski and Pennings 2013). At these sites, EVI varies accordingly between years, with 
higher values in more productive years.   

Tidal inundation can result in the lateral export of dissolved inorganic carbon (DIC) into the 
water column (Wang et al. 2018), thereby suppressing the full estimate of 𝑅𝐸 when using EC 
measurement methods alone (Knox et al. 2018). This situation creates uncertainty in a GPP 
estimate. For example, Troxler et al. (2015) report an increase in pCO2 concentrations in the 
flood water in a mangrove forest, indicating on-going respiration under submergence. These 
studies highlight the need to incorporate DIC flux estimates into both the carbon budget and 
partitioning approaches. In herbaceous salt marshes that experience little tidal inundation, the 
observed suppression is reported to be small (Artigas et al. 2014; Forbrich & Giblin 2015; 
Schaefer et al. 2019), but this may not be the case for fully tidal systems or different plant 
classes. Although no standardized approach currently exists, an incorporation of this lateral 
flux could improve our ability to model carbon fluxes. 
Even though the BC model did not utilize tidal inundation or salinity datasets, it provided a 
better or similar fit to the observed EC flux tower data than studies that did at specific 
locations. For example, for the GCE site only, Tao et al. (2018) obtained an r2 = ~0.46 and 
RMSE of ~20% of the range. Their tide-corrected MODIS data set marginally improved the 
statistical model as compared to NASA’s MOD17 product (model RMSE of 6.98 vs. MODIS 
7.46 GPP m-2). For the US-PLM site, Forbrich & Giblin (2015) took tidal inundation into 
account, finding that GPP was over-estimated by an average of less than 10%; their final 
model estimate was similar to the BC model for this site (Fig. S4). Schäfer et al. (2019) found 
that inclusion of tidal inundation resolved an additional 10 g C/m2/yr out of ~1,800 g 
C/m2/yr, though the site was in a high marsh. The BC model achieved relatively similar or 
better improvements while aggregating biophysical parameterization across ten different 
sites. The Bayesian approach likely accounted for some of these improvements. Ultimately 
for the BC model or other CONUS-wide efforts, the limiting factor is that the input data does 
not exist. There are currently no inundation maps at the spatial or temporal scales required. 

Meteorological variables that are available as layers in Google Earth Engine may hold better 
promise, such as Vapor Pressure Deficit (VPD) as used by MOD17, or better yet, 
precipitation from the same CFSV2 product that the BC model used for temperature and 
𝑖𝑃𝐴𝑅 solar radiation. Rainfall and freshwater input are among the most important factors that 
drive tidal wetland productivity (Heinsch et al. 2004; Mendelssohn & Morris 2002; Feher et 
al. 2017; Chu et al. 2018), so the addition of these factors could provide improvements. 
One advantage of utilizing the Bayesian framework is that any remaining variance in the 
posterior distribution of GPP is potentially captured by the remaining variables, namely by 
𝑓𝑃𝐴𝑅 and its inputs 𝑚𝐸𝑉𝐼  and EVI. For example, if rising salinity cannot be measured onsite, 
its effect on LUE and GPP can still be captured by observing the response of the plants in 
terms of reduced greenness with remotely sensed images. The lack of an explicit parameter 
does not mean that the variance it induced is not accounted for by the 𝑓𝑃𝐴𝑅 imagery inputs. 
Generally, the strength of an indirect capture of the variance by a parameter is most evident 
when relatively long-term data are available for parametrization, so that a wide variation of 
environmental conditions can be used to model the response in the posterior distribution. For 
example, soil salinity as measured by Barr et al. (2013) at the mangrove site is available for 
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more than a decade, and is also available at some locations that are proximate to other sites 
such as US-LA1 (CPRA 2019), but often such data do not exist at other tower sites. Thus, by 
compensating for missing input parameters indirectly, the Bayesian framework is relatively 
flexible, robust, and suited to broad scale analyses. 

 
4.5 Reducing BC Model Uncertainty 

Static wetland boundaries were used as an input stream for the BC model. Yet, we know that 
these ecosystems evolve dynamically over time. Generally, when a tidal wetland erodes into 
water, the EVI is reduced. The BC model can capture this phenomenon.  
However, tidal wetlands also migrate landward due to relative sea level change. The BC 
model did not calculate GPP landward of the static boundaries. Thus, newly-forming 
wetlands outside of these areas were not considered. Our maps also did not include wetlands 
that were restored or developed, unless they were already within the boundaries and the EVI 
detected the change. The net sum of these possibilities was that a non-interpolated version of 
the BC model likely under-estimated the CONUS GPP of tidal wetlands, as time moved 
forward from the date of the static wetland map.  

However, the interpolation procedure gap-filled some eroding wetlands, particularly those 
that were small. As an example, the US-LA1 tower site was rapidly eroding and the BC 
model over-estimated its GPP. Land losses were ~4.1% for coastal Louisiana from 2000-
2016 (Couvillion et al 2017). In additional work outside the scope of the present study, we 
have noted that the CONUS-wide GPP appeared to be increasing over the 2000-2019 time 
period, although this result came with uncertainty. An initial investigation showed that ~1/3 
of the apparent GPP increase from 2000-2019 was due to interpolation. We are currently 
investigating this topic further, as other work has found increasing GPP over time for 
mangroves in Mexico (Vázquez-Lule et al. 2019). One potential future avenue is to use data 
from NOAA’s Coastal Change Analysis Program (C-CAP) to map dynamic changes 
(Windham-Myers et al. 2018), although this approach could coarsen the spatial resolution and 
bring greater wetland classification errors.   

The interpolation procedure introduced uncertainty into the GPP estimates at regional and 
CONUS-wide scales, but it also avoided severely under-counting GPP. For mixed pixels with 
<80% purity, there was a net benefit to interpolation. Interpolating across the 12 km distance 
was not particularly costly (the fit and r2 dropped ~0.07, although the average error as a 
percentage of the true value remained the same). Using a back-of-the-envelope calculation, 
the uncertainty due to interpolation across a 12 km distance was on the order of 20% (RMSE 
1.47 g C interpolation across 12 km / RMSE 1.22 g C not across 12 km = 20%, comparing in 
absolute terms). The semi-variogram analysis showed a somewhat similar result, with a three-
fold better estimate than using a random draw from all other GPP pixels. However, only 
~11% of pixels required interpolation across the 12 km distance or more. If we assume that 
the number and distances of the <80% purity pixels follow Fig. 5b, the uncertainty caused by 
the interpolation procedure was on the order of ~2.2% for our CONUS-wide GPP estimate 
(or 20% * 11% = 2.2%).  
However more importantly, 24.5% of the CONUS tidal wetland area was missing from 
MODIS EVI datasets, and thus would otherwise be missing in calculated 𝑓𝑃𝐴𝑅 and GPP 
estimates. The interpolation procedure gap-filled these small wetland, mixed-pixel locations 
and obtained a more accurate estimate across the entirety of the CONUS. The cost was ~2.2% 
uncertainty. 
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5. Conclusions 
The BC model mapped tidal wetland GPP in a robust manner, matching field-derived EC 
tower observations with relatively low bias and error. Between 2000 and 2019, the average 
daily per m2 GPP across all tidal wetlands and dates was 4.32 ± 2.45 g C /m2/day. The total 
annual GPP for the entire continental US was 39.65 ± 0.89 Tg/yr. The BC model provided 
GPP predictions at specific locations, as well as mapped the spatial arrangement of tidal 
wetland GPP across the continental US. The BC model provided improvements over NASA’s 
MOD17 product by reducing error by approximately half when using the same EC flux tower 
data to compare (r2 of 0.83 versus 0.45, RMSE of 1.22 versus 3.38 g C / m2 / day, average 
error 6% versus 15% off true value). Additionally, the BC model addressed the spatial issues 
associated with the relatively fine-scale tidal wetlands and their distribution across the broad 
extent of the entire US. It accounted for 24.5% of tidal wetland area, at the minimum, that 
was neglected by MOD17. The BC model accounted for over 16.8% of GPP that would still 
be neglected by other models that might use a similar 250 m resolution, by interpolating and 
accounting for MOD13Q1 EVI data that was otherwise missing for known wetland areas. 
The uncertainty due to interpolation was estimated at an average of 2.2%. The 16-day raster 
maps are publically-available at daac.ornl.gov and  www.data.gov,  and summary raster 
datasets, codes, and other files are publically-available at bluecarbon.tamu.edu. We 
encourage other scientists to explore and use the BC model and maps to make new 
discoveries about tidal wetland GPP. 
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Table 1. Summary of flux data sets used during parameterization and validation of the 

Bayesian framework and BC model.  
 
1 Codes denote how each year of EC tower field-derived data was used for the final two class model (woody and 
herbaceous classes): P=parameterization of Bayesian framework only, V=validation for Bayesian framework 
and BC model, N=validation for BC model use only, O=‘offsite’ validation for BC model use only  

EC Tower Site ID,  
Name (State) 

Location 
(Lat, Lon) 

Example 
Reference 

Instrumentation, 
Partitioning Dominant Plant Species BC Model Class Dates1 

US-SKR, Shark River Slough 
Everglades (Florida) 

25.363293, -
81.077544 

Barr et al. 
2013 

CSAT, LI7500, 
Site Specific 

Rhizophora mangle, Avicennia 
germinans, Laguncularia racemosa Woody (Mangroves) 

P 2007-08 
V 2009-10 
N 2004-06; 2011 

US-NC4, Alligator River 
(North Carolina) 

35.787717, -
75.903952 

Miao et al. 
2017 

Windmaster, LI-
7500A, LI-7200, 
Site Specific 

Taxodium distichum, Nyssa aquatica, 
Acer rubrum Woody (Freshwater Swamp) P 2013-14 

V 2015-16  

US-PHM, Plum Island High 
Marsh (Massachusetts) 

42.742443, -
70.830219 

Forbrich et 
al. 2018 

CSAT, EC155, 
Reichstein et al. 
(2005) 

Spartina patens, Spartina alterniflora, 
Distichlis spicata Herbaceous (Salt Marsh) 

P 2013-14  
V 2015-16 
N 2017 

US-SRR, Suisun Marsh - Rush 
Ranch (California) 

38.200556, -
122.02635 

Knox et al. 
2018 

Gill, LI7500A, 
Site Specific 

Schoenoplectus spp., Typha spp., 
Lepidium latifolium L. Herbaceous (Freshwater Wetland) P 2014-15 

V 2016-17 

US-PLM, Plum Island Low 
Marsh (Massachusetts) 

42.734463, -
70.838231 N/A 

CSAT, EC155 
Reichstein et al. 
(2005) 

Spartina alterniflora Herbaceous (Salt Marsh) O 2015-17 

US-HPY, Hawk Property (New 
Jersey) 

40.769173, -
74.085318 

Duman & 
Schäfer 
2018 

CSAT, LI7500A, 
Site Specific Spartina patens, Phragmites australis Herbaceous (Salt Marsh) O 2014-2017 

US-STJ, St. Jones Reserve 
(Delaware) 

39.088225, -
75.437210 

Capooci et 
al. 2019 

Gill, LI7200 
Reichstein et al. 
(2005) 

Spartina alterniflora, Spartina 
cynosuroides Herbaceous (Salt Marsh) O 2016-2017 

US-VFP, Virginia Coast Res. 
Following Point (Virginia) 

37.411065, -
75.833208 N/A 

Gill, LI7500A 
Reichstein et al. 
(2005) 

Spartina alterniflora Herbaceous (Salt Marsh) O 2015-2017 

GCE, Georgia Coastal 
Ecosystems LTER (Georgia) 

31.444094, -
81.283444 

Tao et al. 
2018 

CSAT, LI7200, 
Site Specific Spartina alterniflora Herbaceous (Salt Marsh) O 2013-2015 

US-LA1, Pointe-aux-Chenes 
Brackish Marsh (Louisiana) 

29.501303, -
90.444897 

Krauss et 
al. 2016 

Gill, LI7200 
Reichstein et al. 
(2005) 

Spartina patens Herbaceous (Freshwater Wetland) O 2012 
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 Table 2. Bayesian framework validation, for two-class (woody vs. herbaceous) and four-
class (woody mangrove, woody swamp, herbaceous salt marsh, herbaceous freshwater) 
parameterizations, and when including or excluding light saturation coefficients. 
 
  

 Including light saturation coefficient Excluding light saturation coefficient 
 Tidal Woody Tidal Herbaceous Tidal Woody Tidal Herbaceous 

r2 0.74 0.93 0.08 0.93 
slope 0.68 0.89 0.26 0.89 
offset 0.13 0.01 0.31 0.01 

RMSE 0.08 0.07 0.17 0.07 
n 136 84 136 84 

 
Woody 

Mangrove 
Woody 
Swamp 

Herbaceous 
Salt Marsh 

Herbaceous 
Freshwater 

Woody 
Mangrove 

Woody 
Swamp 

Herbaceous 
Salt Marsh 

Herbaceous 
Freshwater 

r2 0.65 0.83 0.96 0.87 0.21 0.80 0.96 0.84 
slope 0.46 0.97 1.04 0.94 0.35 1.01 1.00 0.90 
offset 0.25 0.01 0.01 0.03 0.30 0.01 0.01 0.04 

RMSE 0.05 0.1 0.04 0.09 0.09 0.11 0.04 0.10 
n 46 22 21 22 46 22 21 22 
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Table 3. Bayesian framework validation for the mangrove class, with and without salinity, 
and when using the median versus the mean of the Bayesian distribution for each 
parameterized value. 
 
 

  

 Excluding salinity coefficient Including salinity coefficient 

value Mean Median Median 
r2 0.34 0.65 0.65 

slope 0.73 0.46 0.47 
offset 0.16 0.25 0.25 

RMSE 0.12 0.05 0.05 
n 92 46 46 
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Table 4. Final Bayesian distribution framework look-up tables used by the BC model for the 
woody and herbaceous tidal wetland classes. Units for  𝜀0 are mmol C / mol photons.  𝑚𝑃𝐴𝑅  
and 𝑚𝐸𝑉𝐼  are dimensionless. 
 
   

 
 

Woody Tidal Wetlands 
 

 mean std. dev. 2.5% median 50% 97.5% 
 𝜺𝟎 39.63 21.23 24.38 31.21 109.3 

mEVI 2.81 1.15 0.6 2.99 4.79 
Tmin (°C) 0.11 2.75 -7.07 1.04 3.01 
Tmax (°C) 33.99 1.9 30.82 33.68 38.81 
Topt (°C) 28.95 1.77 27.09 28.43 34.38 

mPAR 0.0098 0.0007 0.0083 0.0098 0.011 

 
 

Herbaceous Tidal Wetlands 
 

 mean std. dev. 2.5% median 50% 97.5% 
𝜺𝟎  23.34 9.5 12.54 21.03 48.19 

mEVI 3.03 1.05 1.11 3.1 5.06 
Tmin (°C) -0.16 2.31 -5.71 0.4 2.75 
Tmax (°C) 33.46 2.22 28.19 33.47 38.35 
Topt (°C) 27.74 2.47 22.52 27.74 33.93 

mPAR -0.002 0.004 -0.012 -0.002 0.004 



 

 
©2020 American Geophysical Union. All rights reserved. 

Table 5. Top 20 estuaries, ranked in the order of total annual GPP.  Statistics based on 
average over 2000-2019. GPP per m2 is the average for the tidal wetlands only within each 
estuary. 
 

Estuary Name State Area 
(km2) 

GPP per m2 
(g C / m2 / d) 

Total GPP  
(Tg C / yr) 

1. Atchafalaya/Vermilion Bays LA 2465 5.24  4.72 ± 0.14 
2. Chesapeake Bay MD, VA, DC, PA 1651 3.56 2.15 ± 0.11 
3. Breton/Chandeleur Sound LA 1247 4.35 1.98 ± 0.12 
4. North Ten Thousand Islands FL 925 5.82  1.97 ± 0.07 
5. South Ten Thousand Islands FL 894 5.83  1.90 ± 0.07 
6. Barataria Bay LA 1151 3.96  1.66 ± 0.06 
7. Mermentau River LA 777 5.56  1.58 ± 0.10 
8. Terrebonne/Timbalier Bays LA 1156 3.43 1.45 ± 0.07 
9. West Mississippi Sound LA 780 4.78 1.36 ± 0.05 
10. Calcasieu Lake LA 667 4.64 1.13 ± 0.10 
11. Sabine Lake LA, TX 593 5.01 1.08 ± 0.06 
12. Pamlico Sound NC 648 4.18  0.99 ± 0.04 
13. Delaware Bay DE, NJ 699 3.46 0.88 ± 0.05 
14. St. Andrew/St. Simons Sounds GA 552 4.10 0.83 ± 0.03 
15. St. Catherines/Sapelo Sounds GA 532 3.35 0.65 ± 0.03 
16. Florida Bay FL 330 5.36 0.64 ± 0.03 
17. Winyah Bay SC 340 5.19 0.64 ± 0.03 
18. Galveston Bay TX 347 4.68 0.59 ± 0.03 
19. Albemarle Sound NC, VA 357 4.48 0.58 ± 0.03 
20. Mississippi River LA 423 3.40 0.52 ± 0.03 
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Fig. 1. Overview of the input datasets, processes, and products of the BC model. 
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Fig. 2. Pixel purity and interpolation analysis, including: (a) Semi-variogram for woody and 
herbaceous tidal wetlands, showing 12 km as the limiting distance over which interpolation is 
optimized for the woody class, (b) distribution of the <80% purity pixels across distance from 
≥80% purity pixels, showing that over 89% are less than 12 km away, (c) GPP of ≥80% purity 
nearest neighbor, for  <80% purity pixels, showing potential correction afforded by 
interpolation. Dotted lines in (c) denotes 1:1 line. 
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Fig. 3. BC model predicted GPP versus field-derived EC tower GPP, using (a) only validation 
data from the six ‘offsite’ tower locations, (b) all validation data from the ten tower locations 
excluding, and (c) including the dates also used in the parameterization of the Bayesian 
framework. 
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Fig. 4. BC model predicted versus field-derived EC tower GPP for (a) tidal woody versus 
herbaceous wetlands, and (b) the various towers used for validation. 
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Fig. 5. BC model GPP, MOD17 model GPP, and field-derived EC tower GPP at the ten sites. 
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Fig. 6. Average daily GPP per m2 across the continental US, 2000-2019. Data constructed from 
averaging all 16-day periods. As an example of spatial resolution, zoom boxes detail the the 
North and South Ten Thousand Islands in the Florida Everglades. 
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Fig. 7. The average daily GPP per m2, shown at 16-day intervals across all tidal wetlands in the 
continental US from 2000-2019. The map details the averages within individual estuarine and 
coastal drainage basins (EDAs/CDAs). 
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Fig. 8. The total annual GPP, shown at annual intervals across all tidal wetlands in the 
continental US from 2000-2019. The map details the sum totals within individual estuarine and 
coastal drainage basins (EDAs/CDAs). 
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Fig. 9. Examples of spatial patterns in the distribution of average daily GPP per m2 across 
selected regions of the continental US.  The apparent patterns could be related to freshwater 
inflow gradients on the SE Atlantic Coast (left), oceanic influences on barrier island marshes 
versus internal Chesapeake Bay marshes (middle), and hydrologic or other types of 
management on the Louisiana Chenier Plain (right, rotated). Data constructed from averaging 
all 16-day periods. 

 


